The, lung-on-a-chip has the potential to model the effects of environmental toxins, the inflammatory response to inhaled pathogens and the effectiveness of new drugs. Because the chip is transparent, responses can be captured in real time using high-resolution fluorescence microscopy. When E.Coli bacteria were introduced into the air on the ‘lung’ side of the chip, white blood cells on the ‘blood’ side of the chip migrated through the porous membrane into the air chamber to destroy the bacteria. ‘Breathing’ was found to enhance absorption of nanoparticles, some of which induced an inflammatory response and overproduction of free radicals by the lung cells.
The team are now exploring whether the system can mimic gas exchange between alveolar cells and the bloodstream and believe that the device provides proof-of-principle for the concept that organs-on-chips could replace many animal studies in the future.
The study is published in the journal Science.