GSK-3 Inhibitors Help Maintain Pluripotency

Share

stem cellsAlthough the use of embryonic stem cells is controversial and hotly debated from both sides, many researchers believe that these cells offer the promise of revolutionary treatments for a wide variety of diseases and injuries, including spinal cord injuries and degenerative diseases.

Embryonic stem cells are derived from the inner cell mass of an early stage embryo and are pluripotent, meaning that they are able to differentiate into any of the more than 200 cell types that make up the human body. For their full potential to be realised, it is important to maintain this pluripotency whilst growing them in cell culture. Glycogen synthase kinase 3 (GSK-3) had previously been implicated as a regulator of both self-renewal and differentiation, and a study published in the journal Chemistry and Biology now clarifies the role of GSK-3 in murine embryonic stem cell development by showing that inhibitors of GSK-3 enhance self-renewal in the presence of serum and leukaemia inhibitory factor. The authors propose that, by inhibiting GSK-3 activity in the appropriate cell culture environment, it will be possible to more easily obtain large numbers of undifferentiated, pluripotent, cells for medical use. Once the inhibitor is removed from the cell culture medium, it is possible to induce the stem cells to differentiate into the chosen type of specialised cells.
gsk-3 inhibitor

One thought on “GSK-3 Inhibitors Help Maintain Pluripotency”

Leave a Reply

Your email address will not be published.