Image: Flickr - Jack Newton Hepatitis C virus (HCV) is one of the most important causes of chronic liver disease and infection can lead ultimately to cirrhosis and liver cancer. Current standard-of-care treatment – a combination of pegylated α-interferon and ribavirin – is unable to clear the virus in all patients and new antiviral agents designed to inhibit specific viral enzymes such as the protease, helicase and polymerase are being developed.
DGAT-1 inhibitor Researchers led by a team at the Gladstone Institute of Virology and Immunology (GIVI) have now identified a human enzyme that is also needed for viral infectivity, a discovery that may offer a new strategy for treatment. The enzyme, diacylglycerol acyltransferase 1 (DGAT1), is one of two DGAT enzymes that catalyse the final step in triglyceride synthesis. HCV infection is closely tied to lipid metabolism and the Gladstone team showed that infection and replication is severely impaired in liver cells that lack DGAT1 activity: either RNAi-mediated knockdown of DGAT1 or treatment with a DGAT1 inhibitor was effective in limiting production of infectious viral particles. The team went on to show that DGAT1 interacts with the viral nucleocapsid core protein and is required for the trafficking of the core protein to lipid droplets. Knockdown of the other enzyme involved in triglyceride synthesis, DGAT2, had no effect on viral replication.
DGAT1 inhibitors are already being developed as treatments for type II diabetes and obesity and the new study, which is published in Nature Medicine, suggests that they may also be useful for treating HCV infection.