An in vivo screen of 1000 small molecules in adult mice identified eight compounds that were able to enhance neuron formation in the subgranular zone of the hippocampal dentate gyrus. One of the compounds, P7C3, was selected for further study on the basis of favourable ADME predictions. Daily administration of P7C3 to aged rats for 7 days was shown to enhance hippocampal neurogenesis relative to control animals and, after 2 months, treated rats performed significantly better in the Morris water maze test which provides a measure of learning and memory.
P7C3 exerts its proneurogenic effects by protecting newborn neurons from apoptosis and the team next compared the activity of P7C3 with that of Dimebon, which is also believed to have anti-apoptotic activity. Dimebon was found to be proneurogenic in vivo, albeit at levels 10-30 times higher than P7C3, raising the possibility that the two compounds may share a common mechanistic pathway. Although this idea can only be rigorously tested after identification of the molecular target(s), the study raises the hope that more potent analogues of Dimebon with improved clinical efficacy could be identified and also provides appropriate assays.
The study is published in the journal Cell.