Although DTPs are largely quiescent, about 20% eventually resume proliferation in the presence of drug to give colonies of cells referred to as ‘drug-tolerant expanded persisters’ (DTEPs) which can propagate indefinitely in the presence of drug. DTPs rapidly regain sensitivity when grown in drug-free media whereas restoration of sensitivity in DTEPs occurs at higher passage number. The reduced drug-sensitivity of both DTPs and DTEPs was linked to increased expression of a gene that encodes a chromatin-modifying enzyme, KDM5A. Although there are, as yet, no inhibitors of KDM5A, its known association with histone deacetylases (HDACs) led the team to test the effect of HDAC inhibitors on DTPs and DTEPs. Trichostatin A, an inhibitor of class I/II HDACs was found to rapidly kill PC9-derived DTPs and DTEPs but to have no effect on parental PC9 cells or TKI-resensitised DTEPs. The team went on to show that continous treatment with HDAC inhibitors, whilst having no effect on growth and survival of parental P9 cells, can prevent the emergence of EGFR TKI resistance. As well as HDAC inhibitors, a selective inhibitor of the insulin-like growth factor 1 receptor (IGF-1R) kinase also virtually eliminated the emergence of EGFR TKI-tolerant DTEPs. IGF-1R signalling was found to be necessary for drug-tolerant phenotypes in other cancer cell lines and to be mediated by the histone-demethylating activity of KDM5A.
The team hope that the results seen in cell culture experiments will extend to cancer patients and have already begun a clinical trial to see whether a combination of a chromatin-modifying agent with the EGFR TKI, erlotinib, may prevent or delay the development of resistance. Although the trial is not yet completed, early data indicate that the inclusion of a chromatin-modifying agent can dramatically improve clinical benefit in a subset of patients demonstrating acquired TKI resistance.
The study is published in the journal Cell.