Researchers at ETH have suggested that eating snacks – even healthy ones – between meals leads to a vicious circle of physical inactivity and overeating, and could ultimately lead to diabetes. The team have identified a novel mechanism by which insulin regulates both metabolic and behavioural responses to food intake. Insulin produced by the pancreas as a result of feeding inhibits the forkhead box transcription factor, Foxa2. Foxa2 regulates fat metabolism in the liver but also influences neurons in the lateral hypothalamic area of the brain which is considered to be the classic ‘feeding centre’, controlling feeding, diurnal rhythm, sleep and sexual behaviour. In the fasted state, Foxa2 is active and promotes synthesis of melanin-concentrating hormone (MCH) and orexin, proteins with roles in controlling food intake and motivated behaviour. In obese mice, Foxa2 was found to be non-functional, regardless of whether the animals were fasted or fed. Genetically modified mice with permanently active Fox2a in their brains have more MCH and orexin, eat more and have increased insulin sensitivity. The levels of physical activity after feeding are also significantly higher, and more closely resemble those of fasted animals. Conditional activation of Foxa2 in the brains of obese mice also resulted in improved glucose homeostasis, decreased fat and increased lean body mass.
The authors suggest that periods of fasting are important to ensure correct body weight since each time food is consumed, Fox2a is suppressed which reduces the motivation for physical activity and, consequently, energy expenditure. Prevention of Foxa2 phosphorylation may lead to increased levels of physical activity and could be a potential pharmacological target for the treatment of obesity and diabetes.
The study is published in the journal Nature.