Cystic fibrosis (CF) is a hereditary disease characterised by the production of thick sticky mucus which results in frequent lung infections. CF is caused by any one of a number of mutations in a gene called the cystic fibrosis transmembrane conductance regulator (CFTR) which encodes a protein that transports chloride ions across cell membranes. In about 10% of patients worldwide, and more than 50% of patients in Israel, CF is caused by nonsense mutations in the messenger RNA for CFTR. Premature stop codons prevent production of functional full-length protein: patients with nonsense-mutation CF produce very little functional CFTR and often have a severe form of CF.
New Phase II results published in The Lancet show that an orally bioavailable small molecule demonstrates activity in nonsense-mutation CF. PTC124 was designed to induce ribosomes to selectively read through premature stop codons to produce functional CFTR. The data show that treatment with PTC124 results in statistically significant improvements in the chloride channel function of patients.
Nonsense mutations account for a significant number of cases of most inherited diseases and PTC124 may have the potential to treat diseases other than CF.