SR1001 selectively binds to two orphan nuclear receptors: retinoic acid receptor-related orphan receptors α and γt (RORα and RORγt). These receptors have indispensible roles in the development and function of TH17 cells, providing a mechanism for modulating one component of the immune system without general immunosuppression. The team reports that SR1001 induces a conformational change in the receptors that results in their reduced affinity for co-activators and increased affinity for co-repressors. The net result is inhibition of the receptors’ transcriptional activity.
SR1001 blocked the development of murine TH17 cells and inhibited cytokine production by differentiated murine and human TH17 cells. Although a drug is some way off, the team suggests that the results demonstrate the feasibility of targeting TH17 cells and the potential of such an approach for the treatment of autoimmune diseases.
The study is published in Nature.
A solid tool for examining the pathophysiology of a compound disease is the identification of underlying genetic controls. Numerous genes have been caught up as contributing to the risk of developing MS.
Newly published results have proved that the levels of some chemokines and chemokine receptors are increased in blood and cerebrospinal fluid of MS patients.